Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Modeling of the Flow in Cerebral Aneurysms Can Predict Thrombus Deposition Regions Following Vascular Interventions

[+] Author Affiliations
V. L. Rayz, G. Acevedo-Bolton, M. T. Lawton, V. Halbach, J. R. Leach

University of California San Francisco, San Francisco, CA

D. Saloner

University of California San Francisco, San Francisco, CAVA Medical Center, San Francisco, CA

Paper No. SBC2013-14155, pp. V01AT18A002; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


Giant intracranial aneurysms present a grave danger of hemorrhage, cerebral compression, and thromboembolism. Fusiform aneurysms present a particular challenge for interventional treatment since these lesions cannot be completely removed from the circulation by clipping or coiling without sacrificing flow to the distal vasculature. In some cases, these lesions can be treated by interventions eliminating pathological hemodynamics, such as indirect aneurysm occlusion or deployment of a flow diverter stent (FDS). The first approach consists of proximal occlusion, distal occlusion, or trapping, sometimes performed with a bypass supplying flow from collateral circulation. In the second approach, a flow diverter device is used to reconstruct the parent vessel geometry and redirect the flow away from the aneurysmal sac. This is achieved due to the denser struts of an FDS relative to a standard stent, which provide resistance to the flow across its walls. Both interventional approaches often result in thrombus deposition (TD) in the aneurysm sac that is considered protective. Despite their advantages, these treatments introduce complications related to thrombotic occlusion of vital perforators or branch arteries. A virtual model, that could predict TD regions that result from flow alteration could help evaluate various treatment options. In addition to biochemical factors, an important role in the TD process may be played by hemodynamics. Previous studies demonstrated that flow regions with elevated TD potential are characterized by low velocities and near-wall shear stresses as well as increased flow residence time [1, 2]. The current study extends this patient-specific CFD methodology to predict TD regions following vascular interventions, such as proximal vessel occlusion and FDS deployment.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In