Full Content is available to subscribers

Subscribe/Learn More  >

In Situ Calcium Signaling of Chondrocytes Under Non-Serum and Serum Culture

[+] Author Affiliations
Yilu Zhou, Lauren Resutek, Liyun Wang, X. Lucas Lu

University of Delaware, Newark, DE

Paper No. SBC2013-14624, pp. V01AT17A024; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


Chemically defined serum-free medium has been shown to maintain the mechanical properties of cartilage allografts better than serum supplemented medium during long-term in vitro culture [1]. Little is known about this beneficial mechanism at a cellular level. Intracellular calcium ([Ca2+]i) signaling is one of the earliest responses in chondrocytes under mechanical stimulation [2]. It was recently found that calcium signaling is involved in the regulation of chondrocyte morphology changes and its short-term anabolic and catabolic responses under mechanical stimulation [3]. In this study we hypothesized that the beneficial mechanisms of serum-free culture could be indicated by the spatiotemporal features of [Ca2+]i signaling of chondrocytes in situ. We aimed to: (i) compare the in situ spontaneous [Ca2+]i responses of chondrocytes cultured in medium with and without serum; (ii) investigate the correlation between the [Ca2+]i responses of chondrocytes and the biomechanical properties of cartilage explants.

Copyright © 2013 by ASME
Topics: Chondrocytes



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In