0

Full Content is available to subscribers

Subscribe/Learn More  >

Trajectory-Based Tissue Engineering for Cartilage Repair: Correlation Between Maturation Rate and Integration Capacity

[+] Author Affiliations
Matthew B. Fisher, David R. Steinberg, Robert L. Mauck

University of Pennsylvania, Philadelphia, PAPhiladelphia VA Medical Center, Philadelphia, PA

Nicole Söegaard

University of Pennsylvania, Philadelphia, PA

Paper No. SBC2013-14572, pp. V01AT17A022; 2 pages
doi:10.1115/SBC2013-14572
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

Given the limitations of current surgical approaches to treat articular cartilage injuries, tissue engineering (TE) approaches have been aggressively pursued over the past two decades. Although biochemical and biomechanical properties on the order of the native tissue have been achieved (1–5), several in-vitro and in-vivo studies indicate that increased tissue maturity may limit the ability of engineered constructs to remodel and integrate with surrounding cartilage, although results are highly variable (2, 6–8). Thus, “static” measures of construct maturity (e.g. compressive modulus) upon implantation may not be the best indicators of in-vivo success, which likely requires implanted TE constructs to mature, remodel, and integrate with the host over time to achieve optimal results. We recently introduced the concept of “trajectory-based” tissue engineering (TB-TE), which is based on the general hypothesis that time-dependent increases in construct maturation in-vitro prior to implantation (i.e. positive rates) may provide a better predictor of in-vivo success (9). As a first step in evaluating this concept, in the current study we hypothesized that time-dependent increases in equilibrium modulus (a metric of growth) would be correlated to ability of constructs to integrate to cartilage using an in-vitro assay. To test this hypothesis, the current objective was to determine and model the time course of maturation of TE constructs during in-vitro culture and to assess the ability of these constructs to integrate to cartilage at various points during their maturation.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In