Full Content is available to subscribers

Subscribe/Learn More  >

Engineered Microtissues for Real-Time Characterization of Cardiomyocyte Function

[+] Author Affiliations
Ariane C. C. van Spreeuwel, Noortje A. M. Bax, Jasper Foolen, Daisy W. J. van der Schaft, Carlijn V. C. Bouten

Eindhoven University of Technology, Eindhoven, Netherlands

M. A. Borochin, Chris S. Chen

University of Pennsylvania, Philadelphia, PA

Paper No. SBC2013-14248, pp. V01AT17A005; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


Engineered cardiac tissue models become increasingly important for understanding normal and disease cardiac physiology [1]. Where clinical diagnostic tools usually measure overall function of the heart, cardiac tissue models make it possible to focus on single CMs and their microenvironment. The use of in-vitro cardiac disease models can give more insight in the functionality changes of CMs during disease and thereby speed up the development of new therapies. Therefore, we aim to develop a model for healthy and diseased myocardium to study the effect of diseased microenvironments on the mechanical performance of CMs. The platform consists of 3D engineered microtissues with matrix, CMs and fibroblasts (FBs) on an array of polydimethylsiloxane (PDMS) microposts and allows for real-time characterization of CMs and their surrounding matrix. The design was adapted from Legant et. al. [2] and enables us to measure inhomogeneous tissue forces which may occur if not all cells contract equally. Here we focus on optimization and validation of the platform to measure contraction forces and gain insight in CM mechanical functioning.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In