0

Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Induced Pluripotent Stem Cell-Derived Cardiomyocyte Contractility Using Micropost Arrays

[+] Author Affiliations
Marita L. Rodriguez, Charles E. Murry, Nathan J. Sniadecki

University of Washington, Seattle, WA

Paper No. SBC2013-14640, pp. V01AT15A005; 2 pages
doi:10.1115/SBC2013-14640
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

Cardiovascular stem cell therapies have shown increasing promise as a potential therapeutic means for reversing the effects of a myocardial infarction [1]. Out of the currently available sources of human stem cells, human induced pluripotent stem cells (hiPSCs) are very promising in that: the number of cell lines that can be induced to the pluripotent state is extremely vast, they serve as a potential source for patient-specific cardiomyocytes, and their use is non-controversial. However, before they can be used feasibly in a clinical setting, the functional engraftment of these cells into the host tissue must be improved [2]. It is hypothesized that the structural and functional maturity of the stem-cell derived cardiomyocytes prior to implantation, may significantly affect the ability of these cells to engraft with resident heart tissue [3]. One of the most important functional characteristics of a cardiomyocyte is its ability to produce contractile forces. However, assessing the contractile properties of single iPS-CMs is a difficult task. iPS-CMs generally have relatively unorganized cytoskeletons, with stress fibers in multiple directions. This trait renders one or two-point force assays ineffectual in determining total cell forces. Furthermore, iPS-CMs don’t spread well on tissue culture surfaces, which make two-dimensional force measurements almost impossible.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In