0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Validation of a Computational Algorithm for the Zero Pressure Geometry Derivation of Blood Vessels

[+] Author Affiliations
Santanu Chandra, Vimalatharmaiyah Gnanaruban, Ender A. Finol

University of Texas at San Antonio, San Antonio, TX

Jaehoon Seong

California State Polytechnic University, Pomona, Pomona, CA

Barry B. Lieber

Stony Brook University Medical Center, Stony Brook, NY

Jose F. Rodriguez

Universidad de Zaragoza, Zaragoza, Spain

Paper No. SBC2013-14716, pp. V01AT13A026; 2 pages
doi:10.1115/SBC2013-14716
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

Patient-specific computational assessment of biomechanical parameters such as peak wall stress is a promising tool for rupture risk assessment of blood vessels. However, this assessment is dependent on image based modeling of the vasculature [1] and on either structural or fluid-structure interaction analyses performed with numerical models to compute the stress and strain in the vascular wall. Protocols have been successfully derived to develop 3D models of normal and pathological vessels from individual Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) [2]. While the image based models used for these simulations are essentially in a pressurized state (gated to diastolic pressure), the application of physiologic systolic and diastolic pressures to compute stresses and strains is debatable. Therefore, the derivation of a “simulation ready” computational geometry is of great importance to the research community as the accuracy of the computational results is dependent on it.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In