Full Content is available to subscribers

Subscribe/Learn More  >

Comparing In Vivo Head Impact Kinematics From American Football With Laboratory Drop and Linear Impactors

[+] Author Affiliations
Fidel Hernandez, Pete B. Shull, Bruce Cam, Lyndia Wu, Rebecca Shultz, Dan Garza, David B. Camarillo

Stanford University, Palo Alto, CA

Paper No. SBC2013-14680, pp. V01AT10A005; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


Roughly 5% of all collegiate and high school American football players suffer a concussion each season [1]. Concussions and repetitive sub-concussive trauma can have measurable effects on brain function and neurophysiological changes [2]. Several studies have suggested that a combination of linear and angular kinematic measures may be predictive of concussion [3, 4]. Presently, laboratory testing and analysis of purely linear kinematics is used to design and assess the safety of protective headgear. However, it is not known how well existing laboratory tests recapitulate angular kinematics. In this study, we analyze combinations of linear and angular head kinematics experienced by players on the field. This study sought to answer the question: how well do the twin-wire drop test apparatus and a spring-driven linear impactor reproduce the combination of linear and angular head impact kinematics experienced in vivo by players of American football?

Copyright © 2013 by ASME
Topics: Kinematics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In