0

Full Content is available to subscribers

Subscribe/Learn More  >

A Computationally Efficient and Accurate Lumbar Spine Model

[+] Author Affiliations
Jiang Yao, Prabhav Saraswat, Manoj Chinnakonda, Juan A. Hurtado, Victor Oancea, Subham Sett

Dassault Systemes Simulia Corp., Providence, RI

Paper No. SBC2013-14473, pp. V01AT09A019; 2 pages
doi:10.1115/SBC2013-14473
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

The design of spine implants requires a good understanding of spine kinematics and loading conditions. Realistic simulation of each functional spinal unit (FSU) requires capturing complicated contact and deformation of biological tissues in a computationally efficient manner. Specifically, the complexities include contacts in intervertebral and facet joints, restraints of spine ligaments, as well as realistic material properties of soft tissues. The variation in the stiffness among different FSUs is often neglected in spine modeling, which might be crucial for spine function. A hybrid approach for lumbar spine modeling was established that combined motion capture experiments, kinematic spine modeling and detailed finite element modeling. Motion capture data during flexion was collected and used to drive the spine model. For computational efficiency each FSU was modeled as an intervertebral connector (joint) element with different elastic behavior at each level. The connector behavior was calibrated using experimental data on the whole lumbar spinal motion (Wong et al. 2006) and cadaveric moment-rotation relationship of L45 (Heurer et al. 2007). Then the predicted stiffness for L23 was used to calibrate the material properties of a detailed FEM of L23.

Copyright © 2013 by ASME
Topics: Lumbar spine

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In