0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Biomechanical Model for Sacroiliac Range of Motion

[+] Author Affiliations
Bruce Condez, William Camisa, Jenni Buckley

The Taylor Collaboration Laboratories, San Francisco, CA

Jeremi Leasure

The Taylor Collaboration Laboratories, San Francisco, CASan Francisco Orthopaedic Residency Program, San Francisco, CA

Dimitriy Kondrashov

St. Mary’s Spine Center, San Francisco, CASan Francisco Orthopaedic Residency Program, San Francisco, CA

Christopher Ames

University of California, San Francisco, San Francisco, CA

Paper No. SBC2013-14443, pp. V01AT09A018; 2 pages
doi:10.1115/SBC2013-14443
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

In the last seven years, increasing interest has been shown in the sacroiliac (SI) joint. Recent evidence has shown that more than 22% of lower back pain cases are caused by SI joint instability. Sacroiliac joint problems mimic discogenic and/or radicular low back pain, leading to many misdiagnoses (Weksler 2007). Over the last decade, SI fusion devices have been developed and have achieved clinical success (Wise 2008). However, there is no standard biomechanical testing procedure for SI fusion devices, although such a protocol would benefit further product development and comparison testing. The goal of our study is to develop a biomechanical model of sacroiliac range of motion. This study puts forth two methods of producing SI ROM: one model simulating a single leg stance and the second model simulating double leg stance. Our hypothesis was that the single leg stance model would produce ROM similar to what has been observed in vivo; the double leg stance model would produce ROM significantly lower. We aimed to test this hypothesis through comparison of ROM for both models and in vivo results obtained from the literature.

Copyright © 2013 by ASME
Topics: Biomechanics

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In