Full Content is available to subscribers

Subscribe/Learn More  >

Selective Densitometry of the Lumbar Spine

[+] Author Affiliations
Bryant Chu

The Taylor Collaboration Laboratories, San Francisco, CA

Jeremi Leasure

The Taylor Collaboration Laboratories, San Francisco, CASan Francisco Orthopaedic Residency Program, San Francisco, CA

Dimitriy Kondrashov

San Francisco Orthopaedic Residency Program, San Francisco, CASt. Mary’s Spine Center, San Francisco, CA

Paper No. SBC2013-14218, pp. V01AT09A008; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


Bone mineral density (BMD) has been identified as a major factor in spine construct strength, with failures resulting in pedicle screw loosening and pullout2. Computed tomography (CT) scans have been shown to effectively measure BMD1,4. Previous research has utilized this linear correlation of CT Hounsfield Units (HU) to BMD in order to determine BMD as a function of anatomic location within cervical vertebrae1; however, the lumbar spine has not yet been reported on. The goal of this study was to describe BMD of anatomical regions within lumbar vertebrae using the correlation between HU and BMD. It was hypothesized that posterior elements of the spine would exhibit significantly different BMD than the vertebral body. This was tested through means comparison of BMD for each anatomical region.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In