Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Microscale Particles Using a Microfluidic Flow Cytometer Equipped With a Multi-Plex Photon Counter

[+] Author Affiliations
Pouya Asrar, Nastaran Hashemi

Iowa State University, Ames, IA

Paper No. SBC2013-14800, pp. V01AT07A025; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


We have shown the design and fabrication of a microfluidic flow cytometer. The microfluidic flow cytometer has been used to characterize microspheres of different sizes. The device is consisted of a microchannel, electronics, and integrated optics. The microchannel has three inlets. Two inlets are used to introduce sheath flows and one middle inlet is assigned as sample inlet. The sample flow is hydrodynamically focused at the center of the microchannel by two side streams (sheath flows). Also arrays of four chevron grooves compress the sample flow from the top and bottom of the microchannel. The core flow contains microspheres at a certain concentration. Detection of the microspheres at the interrogation region of the channel is performed by integrated optics and electronics. The scattered light emitted from the microspheres is collected by a multi-plex photo diode (MPPC). The results are recorded using data acquisition (DAQ) unit. The MPPCs employed in the setup is the new generation of photon counter devices with an excellent detection limit, a compact size, and capability of recording data at high gain compared to previous generation of photodetectors such as photomultipliers or avalanche photon diodes. The flow cytometer was sensitive enough to collect data from 3 μm microspheres using such mentioned sensitive photon counting unit. We have also used COMSOL Multiphysics software to investigate velocity and pressure distribution as well as concentration distribution along the microchannel. The average voltage collected by MPPC was 1.9 V for 10.2 μm and 1.6 V for 3.2 μm microsphere.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In