0

Full Content is available to subscribers

Subscribe/Learn More  >

Tissue Hydration Influences Bursting Pressure of Fused Arteries

[+] Author Affiliations
James D. Cezo, Nicholas Anderson, Eric Kramer, Mark E. Rentschler, Virginia L. Ferguson

University of Colorado at Boulder, Boulder, CO

Kenneth D. Taylor

ConMed Electrosurgery, Centennial, CO

Paper No. SBC2013-14724, pp. V01AT07A023; 2 pages
doi:10.1115/SBC2013-14724
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

Tissue fusion is a complex thermally driven reaction which, through the application of heat and pressure, bonds the extracellular matrix (ECM) of neighboring tissues together. While the mechanism of this reaction is unknown, several theories do exist. Collagen is largely thought to be responsible for the formation of the fusion bond [1–3]. During tissue fusion, as the tissue temperature is elevated (> 100 °C) [4–5], collagen denatures and water is forcibly evaporated out of the tissue [6–11]. Collagen in arterial tissue is comprised of a tightly wound triple helix held in place by crosslinking. Upon denaturation, the crosslinks are broken and the helix unwinds [6–8]. It is theorized that under applied heat and pressure the denatured molecules tangling with adjacent molecules [1], crosslinking to neighboring molecules [2], or a combination of these two mechanisms are responsible for the formation of the tissue fusion bond [3]. Water is also present in the ECM which can be classified as free or bound. Free water is able to diffuse and move freely around the ECM. Bound water is held to ECM proteins through dipole interactions. During tissue fusion, the water is forcibly removed and these charged sites which interact with water are now able to interact with adjacent molecules. These charged sites would not exist if not for the removal of water from the ECM. The goal of this study is to elucidate the importance of water in the formation of the tissue fusion bond.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In