Full Content is available to subscribers

Subscribe/Learn More  >

Theoretical Predictions of Body Tissue and Blood Temperature During Cold Water Immersion Using a Whole Body Model

[+] Author Affiliations
Anup K. Paul, Swarup A. Zachariah, Rupak K. Banerjee

University of Cincinnati, Cincinnati, OH

Liang Zhu

University of Maryland Baltimore County, Baltimore, MD

Paper No. SBC2013-14398, pp. V01AT07A016; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


Understanding the thermal response of the human body under various environmental and thermal stress conditions is of growing importance. Calculation of the core body temperature and the survivability of the body during immersion in cold water require detailed modeling of both the body tissue and the time-dependent blood temperature. Predicting body temperature changes under cold stress conditions is considered challenging since factors like thickness of the skin and blood perfusion within the skin layer become influential. Hence, the aim of this research was to demonstrate the capability of a recently developed whole body heat transfer model that simulates the tissue-blood interaction to predict the cooling of the body during immersion in cold water. It was shown that computed drop in core temperature agrees within 0.57 °C of the results calculated using a detailed network model. The predicted survival time in 0 °C water was less than an hour whereas in 18.5 °C water, the body attained a relatively stable core temperature of 34 °C in 2.5 hours.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In