Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Derating of High-Intensity Therapeutic Ultrasound Beams Using Gaussian Modal Sums

[+] Author Affiliations
Seyed Ahmad Reza Dibaji, Rupak K. Banerjee

University of Cincinnati, Cincinnati, OH

Matthew R. Myers, Joshua E. Soneson

U.S. Food and Drug Administration, Silver Spring, MD

Paper No. SBC2013-14383, pp. V01AT07A014; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


High intensity focused ultrasound (HIFU) is a noninvasive medical procedure during which a large amount of energy is deposited in a short duration which causes sudden localized rise in tissue temperature, and ultimately, cell necrosis. In assessing the influence of HIFU on biological tissue, semi-empirical mathematical models can be useful for predicting thermal effects. These models require values of the pressure amplitude in the tissue of interest, which can be difficult to obtain experimentally. One common method for estimating the pressure amplitude in tissue is to operate the HIFU transducer in water, measure the pressure amplitude, then multiply by a scaling factor that accounts for the difference in attenuation between water and tissue. This procedure can be accurate when the ultrasound amplitude is low, and the pressure trace in tissue is proportional to that in water. Because of this proportionality, the procedure for reducing the amplitude from water to tissue is called linear derating. At higher intensities, however, harmonics of the fundamental frequency are generated due to nonlinear propagation effects. Higher harmonics are attenuated differently in water and tissue (Hamilton and Blackstock [1]), and the pressure waves in water and tissue are no longer proportional to one another. Techniques for nonlinearly transforming pressure amplitudes measured in water to values appropriate for tissue are therefore desirable when bioeffects of higher intensity procedures are being studied. These techniques are labeled “nonlinear derating”.

Copyright © 2013 by ASME
Topics: Ultrasound



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In