0

Full Content is available to subscribers

Subscribe/Learn More  >

Surface Modified Nitinol Stents Release Metal Ions in Blood

[+] Author Affiliations
Konstantinos Kapnisis, Polyvios Eleftheriou, Costas Pitsillides, Andreas Anayiotos

Cyprus University of Technology, Limassol, Cyprus

George Lapathitis, Christos Karaiskos

Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus

Preston Beck, Jack Lemons

University of Alabama at Birmingham, Birmingham, AL

David Connolly

Lake Region Medical, Galway, Ireland

Paper No. SBC2013-14244, pp. V01AT07A012; 2 pages
doi:10.1115/SBC2013-14244
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

Intravascular nitinol stents are used in the treatment of atherosclerosis and intracranial aneurysms. Despite the unique physical properties of shape memory and superelasticity, the chemical composition of NiTi has raised concerns due to the presence of nickel ions within the alloy which can have adverse effects on human health. Currently, stents are manufactured from corrosion resistant alloys which form protective titanium oxide films, insulating the bulk material from the corrosive physiologic fluid. However, nanometer thick regions of oxides are lost at locations of high strain due to significant bending, micromotion between overlapping stents or local calcification1‐2. Recent studies have revealed that some stents undergo corrosion in vivo, with significant release of metallic ions into surrounding tissues3–4. In this project, a range of techniques has been employed to modify the surface of miniature NiTi stents in order to mimic in vivo corrosion and correlate the amount of nickel ions released with the findings in explanted tissue.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In