0

Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of an Exponential Scaling Relationship for Backflow Length in Brain Tissue

[+] Author Affiliations
Alejandro Orozco, José J. García

Universidad del Valle, Cali, Colombia

Joshua H. Smith

Lafayette College, Easton, PA

Paper No. SBC2013-14121, pp. V01AT07A007; 2 pages
doi:10.1115/SBC2013-14121
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

Convection enhanced delivery is a protocol to deliver large volumes of drugs over localized zones of the brain for the treatment of diseases and tumors. Brain infusion experiments at higher flow rates showed backflow, in which an annular zone is formed outside the catheter and the infused drug preferentially flows toward the surface of the brain rather than through the tissue in the direction of the area targeted for delivery. The foundational model of Morrison et al. [1] considered the deformation of the tissue around the external boundary of the catheter, the axial flow in the annular gap formed around the cannula, and the radial flow from this annular region into the porous tissue in the development of an exponential correlation for backflow length L: Display Formula

(1)
LQ0.6R0.8rc0.8G-0.6μ-0.2,
where Q is the infusion flow rate, R is a tissue hydraulic resistance, rc is the catheter radius, G is the tissue shear modulus, and μ is the fluid viscosity. However, this formula was derived under some limiting assumptions, such as considering the solid phase of the infused tissue as a linearly elastic material under infinitesimal deformations, whereas mechanical testing has shown large deformations under physiological loadings [2, 3].

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In