0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a 1D Model for Assessing the Aortic Root Pressure Drop With Viscosity and Compliance

[+] Author Affiliations
Hossein Mohammadi

McGill University, Montreal, QC, Canada

Raymond Cartier

Montreal Heart Institute, Montreal, QC, Canada

Rosaire Mongrain

McGill University, Montreal, QC, CanadaMontreal Heart Institute, Montreal, QC, Canada

Paper No. SBC2013-14749, pp. V01AT04A026; 2 pages
doi:10.1115/SBC2013-14749
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

Aging and some pathologies such as arterial hypertension, diabetes, hyperglycemia, and hyperinsulimenia cause some geometrical and mechanical changes in the aortic valve microstructure. Cupsal thickening and lost of extensibility (increasing stiffness) are the consequences of these changes in the aortic valve which have a negative impact on the function of the valve [1]. The most frequent form of diseases of the aortic valve is the calcific aortic stenosis which is responsible for 80% of the North American deaths due to valvular heart diseases [2]. In this pathology, calcified nodules on the valve leaflets occur which lead to the thickening and stiffening of the leaflets and restricting the natural motion of the valve which presents an increased resistance to forward blood flow during the ejection phase of the cardiac cycle. To reduce the mortality and morbidity from the aortic stenosis, clinical management and proper diagnosis are essential [3]. Tranvalvular pressure gradient (TPG) and the effective orifice area (EOA), the minimum cross sectional area of the blood flow across the stenosis, are the most commonly used indices for assessing the aortic stenosis [4]. Numerous studies have been done to relate the TPG across the stenosis to the blood flow rate and EOA. Gorlin (1951) was the first to establish a relationship between TPG and EOA [5]. Several studies have reported deviations in valve area calculation by using Gorlin formula. This formula was derived based on some assumptions such as rigid circular orifice, non viscous and steady flow, while valvular orifices are compliant and the flow through them is viscous and pulsatile [6]. Several corrections have been proposed. However, even with these improved formula, significant deviations are still reported [7]. Calark (1978), Bermejo et al (2002) and Garcia et al (2006), by presenting a theoretical model, tried to express TPG in terms of the blood flow rate and EOA [8–10]. None of these studies considered the effect of the aortic root compliance on TPG. Nobari et al reported that the stiffening of the aorta changes the pressure drop and affects the leaflets motion [11]. Therefore, the objective of this study is to develop a 1D model for assessing the aortic pressure drop for the transient viscous blood flow across the aortic stenosis, by taking into account the vessel wall compliance. The derived TPG will be expressed in terms of the surrogate variables which are anatomical and hemodynamic data meaningful and accessible for physicians.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In