Full Content is available to subscribers

Subscribe/Learn More  >

Combined Analysis of Pathology and Hemodynamics of Human Unruptured Cerebral Aneurysm With Thin-Walled Region

[+] Author Affiliations
Yasutaka Tobe, Takanobu Yagi, Yuki Iwabuchi, Momoko Yamanashi, Kenji Takamura, Kiyotaka Iwasaki, Mitsuo Umezu

Waseda University, Tokyo, Japan

Yoshifumi Hayashi, Hirotaka Yoshida, Atsushi Nakajima, Kazutoshi Nishitani, Yoshifumi Okada, Michihito Sugawara, Shin Hiraguchi, Toshiro Kubo, Shigemi Kitahara

Kitahara International Hospital, Hachioji, Tokyo, Japan

Paper No. SBC2013-14374, pp. V01AT04A010; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


Cerebral aneurysms are known as the top reason of subarachnoid hemorrhage (SAH). They are studied in the medical and the engineering field to reveal their pathogenesis, progression, and rupture mechanisms1,2. The pathological studies revealed the site of predilection, rupture rate, the risk factors1, inflammation within the aneurysm, and conditions of endothelial cells (EC) in the aneurysms3. The current pathological analyses of the cerebral aneurysms are all phenomenological and it does not consider the cause-and-effect mechanisms between the mechanical stimulation and the physiological effect although hemodynamics is thought to play an important role in the mechanisms of aneurysms. One reason that the aneurysms’ mechanisms remain unsolved is because the pathology and hemodynamics are studied independently. Purpose of this study is to reveal the relationship of endothelial cell, thickness, and hemodynamics of the cerebral aneurysms by comparing the scanning electron microscope (SEM) analyses, μCT, and the computational fluid dynamics (CFD) analyses of the cerebral aneurysms.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In