0

Full Content is available to subscribers

Subscribe/Learn More  >

Head Rotation Effects on the Flow and Hemodynamics of the Human Carotid Bifurcation

[+] Author Affiliations
Nicolas Aristokleous, Andreas S. Anayiotos

Cyprus University of Technology, Limassol, Cyprus

Yannis Papaharilaou

Foundation for Research and Technology – Hellas, Heraklion, Greece

Ioannis Seimenis

Democritus University of Thrace, Alexandroupolis, Greece

Georgios C. Georgiou

University of Cyprus, Nicosia, Cyprus

Brigitta C. Brott

University of Alabama at Birmingham, Birmingham, AL

Paper No. SBC2013-14708, pp. V01AT03A004; 2 pages
doi:10.1115/SBC2013-14708
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

The use of realistic anatomic human carotid artery bifurcation (CB) models with a realistic blood waveform leads to physiologically relevant numerical simulations. To study the effects of head posture on the geometry and hemodynamics of the CB, Magnetic resonance imaging (MRI) was used on six healthy volunteers in two different head postures: 1) the supine neutral (N) and 2) the prone with rightward head rotation (P) up to 80°. Geometric differences with posture change in both the left (LCA) and right (RCA) carotid arteries were reported before [1]. The blood velocity waveform for each individual was obtained using phase-contrast MRI (PCMRI) at five diameters upstream of CB. Results have shown that peak systolic blood flow rate is reduced, in the prone position for both RCA and LCA in all six volunteers. To investigate the effects of the reduced peak systolic flow on the hemodynamics of the CB, numerical simulations were performed for a volunteer that exhibited the most geometric changes for the prone position in comparison to the other five based on specific geometric parameters [1, 2]. For the two investigated head postures the observed measured input waveforms were used.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In