Full Content is available to subscribers

Subscribe/Learn More  >

Investigating the Effect of Mechanical Stimuli on Omental Mesothelium Differentiation

[+] Author Affiliations
Lucas Hofmeister, Todd Lagus, Elaine Shelton, Jon Edd, David Bader, Hak-Joon Sung

Vanderbilt University, Nashville, TN

Paper No. SBC2013-14518, pp. V01AT02A006; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


Cell sourcing for tissue engineered approaches to vascular repair is a serious issue confronting the field of cardiovascular tissue engineering. Omental mesothelium is a promising autologous cell source for vascular repair and has been used for numerous other therapies [1]. Until recently, omental mesothelium was only thought to play a paracrine role in wound healing but there is increasing evidence that omental mesothelium can undergo divergent terminal differentiation to reparative vasculogenic cell types including: endothelial cells, fibroblasts, or vascular smooth muscle cells.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In