0

Full Content is available to subscribers

Subscribe/Learn More  >

Progression of Abdominal Aortic Aneurysm: Effect of Lagrangian Transport and Hemodynamic Parameters

[+] Author Affiliations
Amirhossein Arzani, Shawn C. Shadden

Illinois Institute of Technology, Chicago, IL

Ga Young Suh, Michael V. McConnell, Ronald L. Dalman

Stanford University, Stanford, CA

Paper No. SBC2013-14643, pp. V01AT01A004; 2 pages
doi:10.1115/SBC2013-14643
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME

abstract

Abdominal aortic aneurysm (AAA) is a permanent, localized enlargement of the abdominal aorta that accompanies disturbed blood flow, which is thought to perpetuate aneurysm progression. AAA rupture is a leading cause of death in the elderly and an exact intervention decision for this disease has always been associated with uncertainty. There is currently no medicinal treatment of AAA, however lower extremity exercise has been a proposed therapy. Specifically, elevated flow rates in the abdominal aorta, reduced retrograde flow, higher mean wall shear stress, and lower oscillatory shear index resulting from exercise have been hypothesized as beneficial in preventing or slowing AAA. Computational fluid dynamics (CFD) has recently been used to model flow conditions inside AAA with an aim to better understand the biomechanical underpinnings of this disease. Recent studies have used patient-specific computational models, however few studies have looked in detail to AAA transport topology or correlated their results with aneurysm progression data. This study aims to (1) compare the flow topology between rest and exercise conditions in patients with small AAA to understand specifically how blood transport changes from rest to exercise, and (2) compare flow parameters obtained by CFD to the aneurysm progression.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In