Full Content is available to subscribers

Subscribe/Learn More  >

Leading Indicators for Prognostication of Impending Failures on Cu-Al Interconnects

[+] Author Affiliations
Pradeep Lall, Shantanu Deshpande

Auburn University, Auburn, AL

Paper No. IPACK2013-73287, pp. V001T07A019; 10 pages
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME


Wire bonding is predominant mode of interconnect in electronics packaging. Traditionally material used for wire bonding is gold. But industry is slowly replacing gold wire bond by copper-aluminum wire bond because of the lower cost and better mechanical properties than gold, such as high strength, high thermal conductivity etc. Numerous studies have been done to analyze failure mechanism of Cu-Al wire bonds. Cu-Al interface is a predominant location for failure of the wirebond interconnects. In this paper, the use of intermetallic thickness as leading indicator-of-failure for prognostication of remaining useful life for Cu-Al wire bond interconnects has been studied. For analysis, 32 pin chip scale packages were used. Packages were aged isothermally at 200°C and 250°C for 10 days. Packages were withdrawn periodically after 24 hours and its IMC thickness was measured using SEM. The parts have been prognosticated for accrued damage and remaining useful life in current or anticipated future deployment environment. The presented methodology uses evolution of the IMC thickness in conjunction with the Levenberg-Marquardt Algorithm to identify accrued damage in wire bond subjected to thermal aging. The proposed method can be used for equivalency of damage accrued in Cu-Al parts subjected to multiple thermal aging environments.

Copyright © 2013 by ASME
Topics: Failure



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In