0

Full Content is available to subscribers

Subscribe/Learn More  >

Examination of Solder Interconnects Formed on ENEPIG Finished Printed Wiring Boards Under Drop Loading Conditions

[+] Author Affiliations
Adam Pearl, Michael Osterman

University of Maryland, College Park, MD

Paper No. IPACK2013-73278, pp. V001T07A018; 7 pages
doi:10.1115/IPACK2013-73278
From:
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME

abstract

Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG), which has been used in component packaging, has been gaining attention as a surface finish for printed wiring boards. The primary role of a printed wiring board surface finish is to provide a solderable surface for assembly, creating a reliable solder interconnect. With regards to reliability, the increased use of mobile electronics has resulted in the need to consider the ability of interconnects to withstand repeated mechanical shocks. This paper examines the drop reliability of both SnPb and SAC305 interconnects formed on ENEPIG finished printed wiring boards. For comparison, the drop reliability test results for similar boards with Immersion Silver (ImAg) board finish are included. Test boards include BGA and resistor packages. The boards are dropped 500 times to achieve failure across the components. Failure analysis revealed that the dominant failure mode for BGA packages on the ENEPIG finish was cracking in the solder balls at the component interface, while for the ImAg finish the dominant failure mode was cratering in the board laminate below the solder pad. For the resistor packages, cracking through the solder joint at the component interface was the dominant failure mode for both the ENEPIG and ImAg finishes. The drop results indicate that both finishes are suitable for systems that could experience mechanical shock due to drop, with components soldered onto ENEPIG with a SAC 305 solder having the highest survivability. The combination of SnPb and ImAg was found to be superior to SAC 305 and ImAg.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In