Full Content is available to subscribers

Subscribe/Learn More  >

Aging Induced Mechanical Property Degradation and Microstructure Evolution of SAC+X Lead Free Solder Alloys

[+] Author Affiliations
Zijie Cai, Jeffrey C. Suhling, Pradeep Lall, Michael J. Bozack

Auburn University, Auburn, AL

Paper No. IPACK2013-73241, pp. V001T07A016; 13 pages
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME


The microstructure, mechanical response, and failure behavior of lead free solder joints in electronic assemblies are constantly evolving when exposed to isothermal aging and/or thermal cycling environments. In our prior work on aging effects, we have demonstrated that large degradations occur in the material properties (stiffness and strength) and creep behavior of Sn-Ag-Cu (SAC) lead free solders during aging. These effects are universally detrimental to reliability and are exacerbated as the aging temperature and aging time increases. Conversely, changes due to aging are relatively small in conventional Sn-Pb solders.

In our current work, we are exploring several doped SAC+X alloys in an attempt to reduce the aging induced degradation of the material behavior of SAC solders. The doped materials are lead free SAC solders that have been modified by the addition of small percentages of one or more additional elements (X). Using dopants (e.g. Bi, In, Ni, La, Mg, Mn, Ce, Co, Ti, Zn, etc.) has become widespread to enhance shock/drop reliability, wetting, and other properties; and we have extended this approach to examine the ability of dopants to reduce the effects of aging and extend thermal cycling reliability. In this paper, we concentrate on presenting the results for SAC+X (X = Zn, Co, Ni). The enhancement of aging resistance for the doped lead free solders was explored. Comparisons were made to the responses of non-doped SAC lead free solder alloys.

The effects of aging on mechanical behavior have been examined by performing stress-strain and creep tests on solder samples that were aged for various durations (0–6 months) at elevated temperature (100 °C). Variations of the mechanical and creep properties (elastic modulus, yield stress, ultimate strength, creep compliance, etc.) were observed and modeled as a function of aging time and aging temperature. Our findings show that the doped SAC+X alloys illustrate reduced degradations with aging for all of the aging temperatures considered. Also, the stress-strain and creep mechanical properties of doped solders are better than those of reference solders after short durations of aging. After long term aging, doped solder alloys were found to have more stable behaviors than those of the standard SAC alloys. A parallel microstructure study has shown that less degradation and coarsening of the phases occurs in doped solder materials relative to non-doped solders after severe aging.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In