0

Full Content is available to subscribers

Subscribe/Learn More  >

Micro Cryogenic Coolers With Mixed Refrigerants

[+] Author Affiliations
Ryan Lewis, Yunda Wang, Paul Schroeder, Collin Coolidge, Y. C. Lee

University of Colorado (CU) at Boulder, Boulder, CO

Ray Radebaugh

National Institute of Standards and Technology (NIST) at Boulder, Boulder, CO

Paper No. IPACK2013-73290, pp. V001T06A005; 8 pages
doi:10.1115/IPACK2013-73290
From:
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME

abstract

A number of small electronic devices benefit from micro-scale low temperature operation. Recently we have developed micro cryogenic coolers (MCCs) using a low-pressure, mixed-refrigerant Joule-Thomson cycle. The cryocoolers utilizes a MEMS-enabled gas compressor coupled to a micro cold stage. Two cold stages have been developed: one which uses a fiber-enabled heat exchanger assembled to a micro-machined throttling valve, and another which uses a MEMS-based heat exchanger. A microcompressor has been developed which uses MEMS-based check valves coupled to a membrane, which is actuated with a mechanically amplified piezoelectric amplifier. The compressor measures a volume 15 mL, can generate a pressure ratio of 6:1 and a maximum flow-rate of 60 standard mL/min. The complete cryocooler has reached low temperatures of 177 K, although temperature instability has been an issue, due to 2-phase flow through the micro-channels. This paper will cover the development and testing of the micro cryogenic cooler, as well as an analysis of the micro channel flow. A proper understanding of the micro-channel flow allows us to design refrigerant mixtures to improve the cooling power, and modify the cooler to eliminate temperature instabilities.

Copyright © 2013 by ASME
Topics: Refrigerants , Coolers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In