0

Full Content is available to subscribers

Subscribe/Learn More  >

The Influence of Uniaxial Normal Stress on the Performance of Vertical Bipolar Transistors

[+] Author Affiliations
Safina Hussain, Parameshwaran Gnanachchelvi, Jeffrey C. Suhling, Richard C. Jaeger, Michael C. Hamilton, Bogdan M. Wilamowski

Auburn University, Auburn, AL

Paper No. IPACK2013-73233, pp. V001T05A010; 13 pages
doi:10.1115/IPACK2013-73233
From:
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME

abstract

In this paper, we have explored the response of bipolar junction transistors (BJT) to the controlled application of mechanical stress. Mechanical strains and stresses are developed during the fabrication, assembly and packaging of the integrated circuit (IC) chips. Due to these stresses and strains, it has been observed by many researchers that changes can occur in the electrical performance of both analog and digital devices. Stress-induced device parametric shifts affect the performance of analog circuits that depend upon precise matching of bipolar and/or MOS devices, and can cause them to operate out of specifications. In the past the authors have extensively investigated the stress effects on resistors embedded on integrated chips and were successful in characterizing die stresses for various packaging architectures. We have also observed stress effects on diodes, field effect transistors (FETs), van der Pauw structures and CMOS sensor arrays. In this present work, the stress dependence of the electrical behavior of bipolar transistors has been investigated. Test structures have been utilized to characterize the stress sensitivity of vertical bipolar devices fabricated on (100) silicon wafers. In the experiments, uniaxial normal stresses were applied to silicon wafer strips using a four-point-bending fixture. An approximate theory has also been developed for stress-induced changes in the current gain of bipolar junction transistors. Both the theoretical and experimental results show similar trend for DC current gain vs. stress plots. Multi-Physics based finite element simulations (coupled electro-mechanical-thermal) have been performed to understand the device level mechanisms that cause the stress induced changes in the BJTs and also to characterize and model stress dependence of fundamental silicon material parameters such as bandgap, intrinsic carrier concentration, and electron/hole mobilities. In the future, the developed formulations can be applied to theoretically optimize transistor design, placement, orientation, and processing to minimize the impact of fabrication and packaging induced die stresses.

Copyright © 2013 by ASME
Topics: Stress , Transistors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In