0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Cycling Reliability Predictions for PBGA Assemblies That Include Aging Effects

[+] Author Affiliations
Mohammad Motalab, Muhannad Mustafa, Jeffrey C. Suhling, Jiawei Zhang, John Evans, Michael J. Bozack, Pradeep Lall

Auburn University, Auburn, AL

Paper No. IPACK2013-73230, pp. V001T05A008; 20 pages
doi:10.1115/IPACK2013-73230
From:
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME

abstract

The microstructure, mechanical response, and failure behavior of lead free solder joints in electronic assemblies are constantly evolving when exposed to isothermal aging and/or thermal cycling environments. Traditional finite element based predictions for solder joint reliability during thermal cycling accelerated life testing are based on solder constitutive equations (e.g. Anand viscoplastic model) and failure models (e.g. energy dissipation per cycle model) that do not evolve with material aging. Thus, there will be significant errors in the calculations with lead free SAC alloys that illustrate dramatic aging phenomena. In this research, we have developed a new reliability prediction procedure that utilizes constitutive relations and failure criteria that incorporate aging effects, and then validated the new approach through correlation with thermal cycling accelerated life testing experimental data.

As a part of this work, a revised set off Anand viscoplastic stress-strain relations for solder have been developed that included material parameters that evolve with the thermal history of the solder material. The effects of aging on the nine Anand model parameters have been determined as a function of aging temperature and aging time, and the revised Anand constitutive equations with evolving material parameters have been implemented in commercial finite element codes. In addition, new aging aware failure criteria have been developed based on fatigue data for lead free solder uniaxial specimens that were aged at elevated temperature for various durations prior to mechanical cycling. Using the measured fatigue data, mathematical expressions have been developed for the evolution of the solder fatigue failure criterion constants with aging, both for Coffin-Manson (strain-based) and Morrow-Darveaux (dissipated energy based) type fatigue criteria. Similar to the findings for mechanical/constitutive behavior, our results show that the failure data and associated fatigue models for solder joints are affected significantly by isothermal aging prior to cycling.

After development of the tools needed to include aging effects in solder joint reliability models, we have then applied these approaches to predict reliability of PBGA components attached to FR-4 printed circuit boards that were subjected to thermal cycling. Finite element modeling was performed to predict the stress-strain histories during thermal cycling of both non-aged and aged PBGA assemblies, where the aging at constant temperature occurred before the assemblies were subjected to thermal cycling. The results from the finite element calculations were then combined with the aging aware fatigue models to estimate the reliability (cycles to failure) for the aged and non-aged assemblies. As expected, the predictions show significant degradations in the solder joint life for assemblies that had been pre-aged before thermal cycling.

To validate our new reliability models, an extensive test matrix of thermal cycling reliability testing has been performed using a test vehicle incorporating several sizes of fine pitch PBGA daisy chain components. Before thermal cycling began, the assembled test boards were divided up into test groups that were subjected to several sets of aging conditions (preconditioning) including different aging temperatures (T = 25, 55, 85 and 125 C) and different aging times (no aging, and 6 and 12 months). After aging, the assemblies were subjected to thermal cycling (−40 to +125 C) until failure occurred. As with the finite element predictions, the Weibull data failure plots have demonstrated that the thermal cycling reliabilities of pre-aged assemblies were significantly less than those of non-aged assemblies. Good correlation was obtained between our new reliability modeling procedure that includes aging and the measured solder joint reliability data.

Copyright © 2013 by ASME
Topics: Reliability

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In