0

Full Content is available to subscribers

Subscribe/Learn More  >

Method for Assessment of Prolonged and Intermittent Storage on Reliability of Leadfree Electronics Using Leading Indicators

[+] Author Affiliations
Pradeep Lall, Kazi Mirza, Mahendra Harsha, Jeff Suhling

Auburn University, Auburn, AL

Kai Goebel

NASA Ames Research Center, Moffett Field, CA

Paper No. IPACK2013-73309, pp. V001T04A025; 11 pages
doi:10.1115/IPACK2013-73309
From:
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME

abstract

Electronic systems may be subjected to prolonged and intermittent periods of storage prior to deployment or usage. Prior studies have shown that leadfree solder interconnects show measurable degradation in the mechanical properties even after brief exposures to high temperature. In this paper, a method has been developed for the determining equivalent storage time to produce identical damage at a different temperature. Electronics subjected to accelerated tests often have a well-defined thermal profile for a specified period of time. Quantification of the thermal profile in field deployed electronics may be often difficult because of variance in the environment conditions and usage profile. There is need for tools and techniques to quantify damage in deployed systems in absence of macro-indicators of damage without knowledge of prior stress history. Approach for mapping damage in leadfree second-level interconnects under between thermal conditions is new. High reliability applications such as avionics and missile systems may be often exposed to long periods of storage prior to deployment. Effect of storage at different temperature conditions can be mapped using the presented approach. A framework has been developed to investigate the system state and estimate the remaining useful life of solder ball subjected to a variety of isothermal aging conditions including 60°C, 75°C and 125°C for periods of time between 1-week and 4-week. Data on damage precursors has been collected and analyzed to derive physics based damage mapping relationships for aging. Mathematical relationships have been derived for the damage mapping to various thermal storage environments to facilitate determining appropriate time-temperature combination to reach a particular level of damage state. Activation energy for the leading indicators of failure is also computed. Specific damage proxies examined include the phase-growth indicator and the intermetallic thickness. The viability of the approach has been demonstrated for leadfree test assemblies subjected to multiple thermal aging at 60° C, 75°C and 125°C. Damage mapping relationships are derived from data based on the two separate leading indicators.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In