0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Management of Ultra Intense Hot Spots With Two-Phase Multi-Microchannels and Embedded Thermoelectric Cooling

[+] Author Affiliations
Jackson B. Marcinichen, Brian P. d’Entremont, John R. Thome

LTCM/EPFL, Lausanne, Switzerland

Gary Bulman, Jay Lewis, Rama Venkatasubramanian

RTI International, Research Triangle Park, NC

Paper No. IPACK2013-73276, pp. V001T04A023; 9 pages
doi:10.1115/IPACK2013-73276
From:
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME

abstract

This study concerns cooling of electronic components of intense background heat flux with one ultra intense hot spot (e.g. 1000 Wcm−2 on a footprint of 1 cm × 1 cm with 5000 Wcm−2 applied to a 0.02 cm × 0.02 cm region at the center). To manage these extreme heat fluxes and consequently surpass the thermal-hydrodynamic challenges and design paradigms, for example as specified in a recent DARPA request for proposals (Intrachip/Interchip Enhanced Cooling Fundamentals - ICECool Fundamentals [1]), on-chip two-phase multi-microchannel cooling integrated with a superlattice (SL) thin-film thermoeletric cooling (TEC) technology was investigated via computer simulations.

The simulations showed that increasing TEC electrical current results in greater enhancement of heat flow through the TEC, but at high currents this benefit is offset by a net addition of heat to the system, which must also be evacuated by the microchannels. When optimized, a minimum peak junction temperature of about 86 °C for a current of about 8 A was found, which represented a reduction of about 4 °C from a maximum allowed 90 °C at the ultra-intense hot-spot, thus potentially significantly capable of exceeding the DARPA [1] requirement, due to the embedded SL TEC within the microevaporator (ME) structure.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In