0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer in Nanoelectronics by Quantum Mechanics

[+] Author Affiliations
Thomas Prevenslik

QED Radiations, Hong Kong, China

Paper No. IPACK2013-73173, pp. V001T04A011; 8 pages
doi:10.1115/IPACK2013-73173
From:
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME

abstract

Today, the transient Fourier heat conduction equation is not considered valid for the derivation of temperatures from the dissipation of Joule heat in nanoelectronics because the dimension of the circuit element is comparable to the mean free path of phonon energy carriers. Instead, the Boltzmann transport equation (BTE) for ballistic transport based on the scattering of phonons within the element is thought to govern heat transfer. However, phonons respond at acoustic frequencies in times on the order of 10–100 ps, and therefore the BTE would not have meaning if the Joule heat is conserved by a faster mechanism.

Unlike phonons with response times limited by acoustic frequencies, heat transfer in nanoelectronics based on QED induced heat transfer conserves Joule heat in times < 1 fs by the creation of EM radiation at optical frequencies. QED stands for quantum electrodynamics. In effect, QED heat transfer negates thermal conduction in nanoelectronics because Joule heat is conserved well before phonons respond.

QED induced heat transfer finds basis in Planck’s QM given by the Einstein-Hopf relation in terms of temperature and EM confinement of the atom as a harmonic oscillator. QM stands for quantum mechanics and EM for electromagnetic. Like the Fourier equation, the BTE is based on classical physics allowing the atom in nanoelectronic circuit elements to have finite heat capacity, thereby conserving Joule heat by an increase in temperature. QM differs by requiring the heat capacity of the atom to vanish. Conservation of Joule heat therefore proceeds by QED inducing the creation of excitons (hole and electron pairs) inside the circuit element by the frequency up-conversion of Joule heat to the element’s TIR confinement frequency. TIR stands for total internal reflection. Under the electric field across the element, the excitons separate to produce a positive space charge of holes that reduce the electrical resistance or upon recombination are lost by the emission of EM radiation to the surroundings.

TIR confinement of EM radiation is the natural consequence of the high surface to volume ratio of the nanoelectronic circuit elements that concentrates Joule heat almost entirely in their surface, the surfaces coinciding with the TIR mode shape of the QED radiation. TIR confinement is not permanent, present only during the absorption of Joule heat.

Charge creation aside, QM requires nanoelectronics circuit elements to remain at ambient temperature while dissipating Joule heat by QED radiation to the surroundings. Hot spots do not occur provided the RI of the circuit element is greater than the substrate or surroundings. RI stands for refractive index.

In this paper, QED radiation is illustrated with memristors, PC-RAM devices, and 1/ f noise in nanowires, the latter of interest as the advantage of QM in avoiding hot spots in nanoelectronics may be offset by the noise from the holes created in the circuit elements by QED induced radiation.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In