Full Content is available to subscribers

Subscribe/Learn More  >

High Field Breakdown of Carbon Nanotube Network Transistors

[+] Author Affiliations
Man Prakash Gupta, Satish Kumar

Georgia Institute of Technology, Atlanta, GA

Ashkan Behnam, David Estrada, Eric Pop

University of Illinois at Urbana Champaign, Urbana, IL

Paper No. IPACK2013-73115, pp. V001T04A007; 6 pages
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME


We develop and employ a self-consistent electro-thermal model to study the high field breakdown of carbon nanotube (CNT) network thin film transistors (CN-TFTs). We investigate the effects of the CNT alignment angle and length distribution on the breakdown process caused by excessive self-heating. We examine relevant breakdown characteristics such as the peak current and corresponding voltage and power in relation to these two network parameters. We find that the breakdown behavior can significantly vary with respect to the CNT length and alignment distribution even when the network density is kept the same. Results suggest that an optimum alignment (∼ 65°) can be found for a network with constant CNT lengths to obtain higher current/power without setting off an early breakdown. When both CNT length and alignment angle are varied, we find that networks with higher average CNT length have lower optimum alignment such that doubling the average CNT length lowers the optimum alignment angle by half. Therefore these network parameters need to be carefully selected to achieve greater thermal reliability and higher electrical performance.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In