0

Full Content is available to subscribers

Subscribe/Learn More  >

Enhanced Electrical and Thermal Interconnects by the Self-Assembly of Nanoparticle Necks Utilizing Capillary Bridging

[+] Author Affiliations
Thomas Brunschwiler, Gerd Schlottig, Songbo Ni, Yu Liu, Javier V. Goicochea, Jonas Zürcher, Heiko Wolf

IBM Research - Zurich, Rüschlikon, ZH, Switzerland

Paper No. IPACK2013-73092, pp. V001T03A001; 10 pages
doi:10.1115/IPACK2013-73092
From:
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME

abstract

This work presents enhanced composite joints that support both electrical or thermal transport in electronic packages. The joints are sequentially formed by applying a nanoparticle suspension, evaporating a solvent, self-assembling of nanoparticles by capillary bridging, and the formation of so called “necks” between micron-sized features. This sequence is used to either form low temperature electrical joints under copper pillars or enhanced percolating thermal underfills with areal contacts between filler particles of the composite. The report discusses processing aspects of the capillary bridges evolution and of uniform neck formation, it discusses strategies to achieve mechanically stable necks, and it compares the performance of the achieved joints against state-of-the-art solutions.

The capillary bridge evolution during liquid evaporation was investigated in copper pillar arrays and random particle beds. The vapor-liquid interface first penetrates locations of low pillar or particle density resulting in a dendritic fluid network. Once the network breaks up individual necks form. For aqueous nano-suspensions highly uniform necks with high yield were obtained by evaporation at 60°C. Isothermal conditions were preferred to yield equal neck counts at the cavity’s top and bottom surfaces. Mechanically stable silver necks required an annealing at only 150°C, dielectric necks an annealing at 140°C with a bi-modal approach. Therein polystyrene nanoparticles occupy interstitial positions in densly packed alumina necks, then melt and adhere to the alumina. The electrical necks showed a shear strength of 16 MPa, equivalent to silver joints used in power electronic packages. The thermal necks yielded a thermal conductivity of up to 3.8 W/mK, 5-fold higher than commercially available capillary thermal underfills.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In