Full Content is available to subscribers

Subscribe/Learn More  >

Highly Manufacturable and Reliable CZT Detectors

[+] Author Affiliations
Bill Burdick, Jeff Erlbaum, Kaustubh Nagarkar, Brian Yanoff, Liang Yin, Raj Bahadur, Esmaeil Heidari, Donna Sherman, James E. Simpson

GE Global Research, Niskayuna, NY

Paper No. IPACK2013-73314, pp. V001T01A007; 13 pages
  • ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • Volume 1: Advanced Packaging; Emerging Technologies; Modeling and Simulation; Multi-Physics Based Reliability; MEMS and NEMS; Materials and Processes
  • Burlingame, California, USA, July 16–18, 2013
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5575-1
  • Copyright © 2013 by ASME


Cadmium Zinc Telluride (CZT) based radiation detectors have been developed over the past decade and are, increasingly, being used in security and healthcare applications. Improvements in radiation detector performance, size, and cost have been achieved; however, the manufacturability and reliability of the individual CZT detector package continues to limit widespread use and new applications.

To date, most CZT detector packages are designed, manufactured, and tested to requirements defined by manufacturers, rather than military, commercial, or industry standards, as is common for semiconductor packages. The lack of test standards has led to use restrictions and/or complex detector system design, as required to mitigate unknown or low detector package reliability. CZT detector packaging, as was the case for semiconductor packaging, has reached the point in technology maturation where a focus on optimizing detector design for manufacturability and reliability is appropriate and necessary.

This paper reviews the systematic approach, including design, process development, and testing, utilized in the development and demonstration of a highly manufacturable and reliable (95% reliability at 1000 cycles) CZT detector package. Finite Element Model (FEM) based design and material trade-off studies, development of highly manufacturable and reliable commercial electronic assembly processes, failure mode identification and mitigation, selection and use of reliability test standards, and analyses are detailed for a flip-chip-CZT-on-ceramic substrate, detector package targeted for field deployment. As well, the next steps in package and system design, manufacturing, and reliability testing are proposed.

Copyright © 2013 by ASME
Topics: Sensors



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In