0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Modeling of a BWR Control Rod Insertion System for Seismic Analysis and its Experimental Validation

[+] Author Affiliations
Yuichi Koide, Yoshihiro Goto

Hitachi, Ltd., Hitachinaka, Ibaraki, Japan

Yuki Sato, Hirokuni Ishigaki, Tsuyoshi Takahashi, Tomomi Shiraki

Hitachi-GE Nuclear Energy, Ltd., Hitachi, Ibaraki, Japan

Paper No. PVP2013-97668, pp. V008T08A046; 9 pages
doi:10.1115/PVP2013-97668
From:
  • ASME 2013 Pressure Vessels and Piping Conference
  • Volume 8: Seismic Engineering
  • Paris, France, July 14–18, 2013
  • Conference Sponsors: Pressure Vessels and Piping Division, Nondestructive Evaluation Engineering Division
  • ISBN: 978-0-7918-5574-4
  • Copyright © 2013 by ASME

abstract

The assessment of the seismic scrammability, which means the control rod insertability during a seismic event, is one of the most important design tasks for ensuring the seismic safety of nuclear power plants in Japan. This paper discusses the dynamic modeling of the control rod insertion behavior of a boiling water reactor (BWR) during an earthquake. A dynamic model of a control rod insertion system for BWR was developed based on multi-body dynamics. The coupled vibration behavior of the fuel assemblies in the fluid was modeled as an inertial coupling system. The effect of the interaction force between the control rod and the fuel assemblies was considered in a three-dimensional contact analysis. The hydraulic control unit and the control rod drive, which provide the control rod with drive force, were modeled in the concentrated parameter system. The model parameters, such as the friction coefficient between the control rod and the fuel assembly and the discharge coefficient of the scram piping, were obtained by conducting experiments. The validity of the model was confirmed by comparing the analytical results with the experimental ones. First, the validity of the fuel assembly model was verified through a comparison with the vibration testing in an underwater condition. It was confirmed that the calculation results for the frequency response of the fuel assembly were in good agreement with the experimental ones. Second, the validity of the modeling method of the drive system consisting of the hydraulic control unit and the control rod drive was verified through a comparison with the scram testing under non-vibration condition. The calculation results for the time history of the control rod insertion, the accumulator pressure, and the flow through the scram piping were in good agreement with the experimental ones. Finally, the validity of the modeling method of the whole system consisting of the fuel assemblies, the control rod, and the drive system was verified through a comparison with the scram testing under vibration condition. The calculation results for the time history of the control rod insertion stroke and the time delay of the insertion motion during an earthquake were in good agreement with the experimental ones. The results of these comparisons show that the developed analysis model can simulate the control rod insertion behavior during an earthquake.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In