Full Content is available to subscribers

Subscribe/Learn More  >

Study on the Control of Displacement for Base Isolation Systems Utilizing High-Viscous Liquid (Effects of Eccentricity)

[+] Author Affiliations
Tomohiro Ito, Naoto Nishimatsu, Atsuhiko Shintani, Chihiro Nakagawa

Osaka Prefecture University, Sakai, Osaka, Japan

Paper No. PVP2013-97072, pp. V008T08A035; 8 pages
  • ASME 2013 Pressure Vessels and Piping Conference
  • Volume 8: Seismic Engineering
  • Paris, France, July 14–18, 2013
  • Conference Sponsors: Pressure Vessels and Piping Division, Nondestructive Evaluation Engineering Division
  • ISBN: 978-0-7918-5574-4
  • Copyright © 2013 by ASME


In Japan, ensuring the structural integrity of cask systems during seismic events is becoming increasingly important. Cask systems, which are free-standing cylindrical structures that contain spent fuel assemblies, are considered as sliding isolation systems. Thus far, analytical studies conducted by the authors have already indicated that cask systems subjected to strong seismic motions, undergo large sliding motions, and in the worst case, may collide with one another. Therefore, reducing the sliding motions of casks to avoid mutual collisions and consequent contamination of radioactive substances is critical.

To suppress sliding motions for very heavy free-standing structures such as cask systems, the authors proposed a sliding motion suppression system that uses high-viscous liquid and coaxial circular cylinders. This system is installed at the bottom end of the structure and the annular space is filled with a high-viscous liquid. A previous study showed that high-viscous liquid in annular spaces provides added damping effects of considerable magnitude, and thus allows the sliding motion to be suppressed.

In this study, the added damping effects of the annular space liquid are clarified using a fundamental testing device for various liquid viscosities, ratios of diameters for the inner and outer cylinders, and eccentricities of the inner cylinder. Moreover, shaking table tests are conducted to confirm that the added damping effects suppress excessive displacement.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In