Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Properties of a New Nitrogen-Strengthened Stainless Steel With Reduced Amount of Ni and Mo in High Pressure Gaseous Hydrogen

[+] Author Affiliations
Kazuhisa Matsumoto, Shinichi Ohmiya, Hideki Fujii

Nippon Steel & Sumitomo Metal Corporation, Futtsu, Chiba, Japan

Masaharu Hatano

Nippon Steel & Sumikin Stainless Steel Corporation, Hikari, Yamaguchi, Japan

Paper No. PVP2013-97656, pp. V06BT06A019; 7 pages
  • ASME 2013 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Paris, France, July 14–18, 2013
  • Conference Sponsors: Pressure Vessels and Piping Division, Nondestructive Evaluation Engineering Division
  • ISBN: 978-0-7918-5571-3
  • Copyright © 2013 by ASME


To confirm a compatibility of a newly developed high strength stainless steel “NSSC STH®2” for hydrogen related applications, tensile and fatigue crack growth properties were evaluated in high pressure hydrogen gas up to 90MPa. At temperatures between −40 and 85°C, no conspicuous deterioration of tensile properties including ductility was observed even in 90 MPa hydrogen gas at −40°C while strength of STH®2 was higher than SUS316L. Although a slight drop of reduction of area was recognized in one specimen tested in 90 MPa hydrogen gas at −40°C, caused by the segregation of Mn, Ni and Cu in the laboratory manufactured 15mm-thick plate, it was considerably improved in the large mill products having less segregation. Fatigue crack growth rates of STH®2 in high pressure hydrogen gas were almost the same as that of SUS316L in air. Although fatigue crack growth rate in air was considerably decelerated and lower than that in hydrogen gas at lower ΔK region, this was probably caused by crack closure brought by oxide debris formed on the fracture surfaces near the crack tip by the strong contact of the fracture surfaces after the fatigue crack was propagated. By taking the obtained results into account, it is concluded that NSSC STH®2 has excellent properties in high pressure hydrogen gas in addition to high strength compared with standard JIS SUS316L.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In