0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Determination of the Static Equivalent Pressures of Gas Phase Detonations in Pipes and Comparison With Numerical Models

[+] Author Affiliations
Hans-Peter Schildberg

BASF SE, Ludwigshafen, Germany

Jan P. M. Smeulers

TNO Science and Industry, Delft, The Netherlands

Gersom Pape

Delft Technology & Research Laboratories, Bergschenhoek, The Netherlands

Paper No. PVP2013-97677, pp. V005T05A020; 15 pages
doi:10.1115/PVP2013-97677
From:
  • ASME 2013 Pressure Vessels and Piping Conference
  • Volume 5: High-Pressure Technology; ASME NDE Division; Rudy Scavuzzo Student Paper Symposium
  • Paris, France, July 14–18, 2013
  • Conference Sponsors: Pressure Vessels and Piping Division, Nondestructive Evaluation Engineering Division
  • ISBN: 978-0-7918-5569-0
  • Copyright © 2013 by ASME

abstract

In order to determine the effective load of gas phase detonations on pipe walls (“static equivalent pressure”), comprehensive experiments have been conducted in 48.3×2.6 and 114.3×3.6 pipes (outer diameter [mm] × wall thickness [mm]), in which deflagrative explosions of stoichiometric C2H4/O2/N2-mixtures at 20 °C underwent the transition to detonation. Initial pressures were chosen high enough to produce detonation pressures that caused significant bulging of the pipe walls.

All 8 different pressure scenarios that can be distinguished for gas phase detonations in pipes were addressed by the experiments, even the extremely rare case of having the deflagration to detonation transition occurring within about 1 pipe diameter a head of blind flange which yields the largest static equivalent pressure of all scenarios.

By these tests it was possible to (1) validate the predictions of recently developed numerical models for predicting the structural response of the pipe wall and to (2) determine the static equivalent pressure of gas phase detonations in pipes even for those detonative pressure scenarios for which a reliable pressure/space/time profile required as input for the numerical models is at present not yet available. Once the static equivalent pressure is known, the well-established pressure vessel design guidelines, which can only cope with static loads, can be applied for detonation pressure proof pipe design in all those cases where the detonation speed is not close to the propagation speed of the flexural waves in the pipe.

Furthermore, preliminary information was obtained about which of the 8 detonative pressure scenarios only depends on the Chapman-Jouguet pressure ratio of the involved mixture and which scenarios will also depend on other characteristic parameters of the involved mixture (difference between initial temperature and auto ignition temperature, ignition delay time).

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In