Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Testing of Organic Fluids for Supercritical Thermal Energy Storage Systems

[+] Author Affiliations
Louis A. Tse, Antoine Stopin, Miguel A. Garcia-Garibay, Richard E. Wirz

University of California, Los Angeles, Los Angeles, CA

Gani B. Ganapathi

California Institute of Technology, Pasadena, CA

Paper No. ES2013-18195, pp. V001T03A007; 7 pages
  • ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2013 7th International Conference on Energy Sustainability
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5551-5
  • Copyright © 2013 by ASME


Concentrating solar power (CSP) continues to advance as worldwide interest in renewable energy continues to grow. CSP technologies, including parabolic troughs, power towers, and dish/engines, provide the unique potential for low-cost thermal energy storage that will ensure that renewable energy can become cost-competitive with traditional fossil fuel sources on a large scale and comprise a significant portion of the global energy portfolio.

The challenge is to develop cost-effective thermal energy storage to ensure that renewable energy can become a major part of the national and global energy supply. Storage fluid selection is a critical decision that must fulfill a number of criteria to not only provide long-term reliability, but also to remain cost-competitive in the power generation arena. The state-of-the-art thermal storage design uses a 2-tank molten salt configuration. However, most molten salt mixtures have a relatively high freezing temperature, which poses some system design issues. Additionally, the price of molten salt mixtures is steadily increasing. Current laboratory and industry research efforts have shifted focus to exploration of alternative storage fluids to significantly reduce costs.

In this study, several storage fluid candidates have been selected based on an attractive combination of thermodynamic properties, cost, and availability. In this paper, rapid screening of fluid candidates is reported, and an expanded series of thermal cycling and supercritical characterization experiments have been planned and are being implemented to determine the long-term durability of the fluid candidates over a range of operating temperatures for extended periods of time. Commercial-grade materials were used, and in the case of naphthalene and biphenyl, the testing procedure was carefully controlled to prevent sublimation of the sample. This paper presents the results of a study investigating the thermal stability of several organic fluids. Samples were extracted and chemical analyses such as nuclear magnetic resonance (NMR) and gas chromatography (GC) were conducted to observe degradation behavior and decomposition pathways. The rapid screening phase provided a timely and effective filter of the best-performing fluid candidates for supercritical thermal energy storage.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In