0

Full Content is available to subscribers

Subscribe/Learn More  >

Coupled Computational Heat Transfer and Reactor Physics for SCWR

[+] Author Affiliations
Christopher R. Hughes, DuWayne Schubring, Kelly A. Jordan, Dominik Rätz

University of Florida, Gainesville, FL

Paper No. HT2013-17376, pp. V004T19A007; 7 pages
doi:10.1115/HT2013-17376
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 4: Heat and Mass Transfer Under Extreme Conditions; Environmental Heat Transfer; Computational Heat Transfer; Visualization of Heat Transfer; Heat Transfer Education and Future Directions in Heat Transfer; Nuclear Energy
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5550-8
  • Copyright © 2013 by ASME

abstract

To fully model the physics present within the proposed supercritical water reactor (SCWR), the thermal hydraulics calculations (yielding temperatures and densities in each material as a function of space) must be coupled to the neutronic calculations (yielding reactivity and neutron flux shapes). To enable this full coupling, a 3D model of a supercritical water reactor is being implemented in the CFD software OpenFOAM with the same geometry as a 3D MCNP (neutronics) model. Coupling will performed through result exchange between the two codes — densities and temperatures from OpenFOAM to MCNP, with heat generation returned from the neutronics calculations. Use of a reduced-geometry model is advisable due to the high computational cost of each OpenFOAM/MCNP coupling iteration. In the present work, a 1.5D thermal model of a single fuel pin was coupled with a 3D MCNP model. The thermal model includes single channel analysis (cladding/coolant heat transfer) as well as heat transfer within the cladding, helium gas gap, and uranium dioxide fuel itself. These heat transfer zones provide specific data points of the radial temperature profile. Because no radial mesh is considered, full radial dependence is not possible. The model provides limited radial dependence unlike what a 1D code could provide; thus, 1.5D is used to indicate the incomplete radial dependence that is included in the model. Iteration between the two codes is performed until heat generation is converged to within 10% between successful MCNP results. A discussion of these 3D/1.5D coupled results and the path forward to fully 3D coupling is provided.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In