Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Thermal Transit-Time Flow Meter for High Temperature, Corrosive and Irradiation Environment

[+] Author Affiliations
Elaheh Alidoosti, Jian Ma, Yingtao Jiang, Taleb Moazzeni

University of Nevada Las Vegas, Las Vegas, NV

Paper No. HT2013-17309, pp. V004T19A006; 6 pages
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 4: Heat and Mass Transfer Under Extreme Conditions; Environmental Heat Transfer; Computational Heat Transfer; Visualization of Heat Transfer; Heat Transfer Education and Future Directions in Heat Transfer; Nuclear Energy
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5550-8
  • Copyright © 2013 by ASME


In the environments of high temperature (>300 °C – 1000 °C), corrosive and even irradiation application, the challenges of providing reliable and accurate flow rate measurement is significant. In comparing with many other existing technologies for normal operation environments, correlated thermal transit-time flow meter show its advantages of resolving the challenges encountered in those harsh conditions. The correlated thermal signals can be detected by two separated thermal sensors (for example, thermocouples) in series alignment along the pipe, and derive the flow rate. It was evaluated to have accurate measurement for small pipe at slow fluid speed. In the higher flow rate and big pipe size application, this technology shows its weakness due to the limitations associated with slow response time of thermal sensor, dimension, and low strength of thermal signal. In this paper, we present a sophisticated layout of thermal transit-time flow meter with numerical simulation and experiments. By numerical results, we observed that the obtained flow in the bypass route is linearly proportional to the main flow over higher range of flows showing that the measured flow is successfully extended to high range and with stable and accurate measurement results.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In