0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Aerodynamic Performance of Film Cooling With Backward Injection Holes

[+] Author Affiliations
Ganesh Subbuswamy, Xianchang Li, Kunal Gharat

Lamar University, Beaumont, TX

Paper No. HT2013-17803, pp. V004T14A033; 7 pages
doi:10.1115/HT2013-17803
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 4: Heat and Mass Transfer Under Extreme Conditions; Environmental Heat Transfer; Computational Heat Transfer; Visualization of Heat Transfer; Heat Transfer Education and Future Directions in Heat Transfer; Nuclear Energy
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5550-8
  • Copyright © 2013 by ASME

abstract

Film cooling has been successfully used in cooling gas turbine components that are exposed to very high temperature environments. One main disadvantage of using film cooling is the aerodynamic losses associated. To address to the needs of obtaining uniform cooling in the downstream regions, backward injection of coolant has proved to be effective. However, there is a need to understand the aerodynamic behaviors of jet and mainstream flows in order to design effective configurations with this scheme of injecting coolant. In this work, the underlying aerodynamic principles of backward injection are studied numerically. All simulations are conducted with Fluent, a commercial CFD software. Results show that the classical counter rotating vortex found in simple cylindrical holes are not seen in the case of backward injections. Backward injection results in reduced coolant requirements and elimination of complex hole designs to avoid jet lift-off.

Copyright © 2013 by ASME
Topics: Film cooling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In