0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Flow and Heat Transfer Characteristics Around Oval-Shaped Cylinder

[+] Author Affiliations
Guan-min Zhang, Mao-cheng Tian

Shandong University, Jinan, China

Nai-xiang Zhou

Shandong Urban and Rural Planning and Design Institute, Jinan, China

Wei Li

Zhejiang University, Hangzhou, China

David Kukulka

State University of New York College at Buffalo, Buffalo, NY

Paper No. HT2013-17715, pp. V004T14A027; 12 pages
doi:10.1115/HT2013-17715
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 4: Heat and Mass Transfer Under Extreme Conditions; Environmental Heat Transfer; Computational Heat Transfer; Visualization of Heat Transfer; Heat Transfer Education and Future Directions in Heat Transfer; Nuclear Energy
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5550-8
  • Copyright © 2013 by ASME

abstract

Numerical simulation and experimental study were carried out to investigate the flow and heat transfer characteristics of air flowing across different types of oval-shaped cylinders. These cylinders have axis ratios, ε, of 1, 1.5, 2, 3, 4, and 5 with the major axis parallel to the free-stream for Reynolds numbers, based on the hydraulic diameter, varying from 4000 to50000. When ε = 1 the tube is a circular cylinder and when 1/ε = 0 a flat plate is represented. Numerical results show that the wake size decreases as ε increases from 1 to 5. The minimum value of Cp takes place at an angular position decrease as ε decreases and the maximum value of Cf gradually increases with the increasing ε. Simulated results agree very well with those available in the existing literature. Oval-shaped cylinders have a higher favorable pressure gradient at the front of the cylinder and a lower adverse pressure gradient at the back of the cylinder for flows in inhibiting separation. Empirical correlations for each tube have been obtained by numerical simulation relating the dimensionless heat transfer coefficient with the Reynolds Number and Prandtl Number. Field synergy theory and performance evaluation criteria (PEC) were used to analyze the mechanisms of heat transfer enhancement for oval-shaped cylinders. It was found that an oval-shaped tube with ε = 2 has the best comprehensive heat transfer performance at Re >11952. In order to verify the effectiveness and correctness of our numerical model, an experiment was carried out for cylinders for values of ε equal to 1, 2, 3 and 4.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In