0

Full Content is available to subscribers

Subscribe/Learn More  >

Microtomography-Based Analysis of Pressure Drop and Heat Transfer Through Open Cell Metal Foams

[+] Author Affiliations
M. Oliviero, S. Cunsolo, M. Iasiello, V. Naso, N. Bianco

Università degli studi di Napoli Federico II, Napoli, Italy

W. M. Harris, W. K. S. Chiu

University of Connecticut, Storrs, CT

Paper No. HT2013-17237, pp. V004T14A011; 10 pages
doi:10.1115/HT2013-17237
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 4: Heat and Mass Transfer Under Extreme Conditions; Environmental Heat Transfer; Computational Heat Transfer; Visualization of Heat Transfer; Heat Transfer Education and Future Directions in Heat Transfer; Nuclear Energy
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5550-8
  • Copyright © 2013 by ASME

abstract

Their light weight, open porosity, high surface area per unit volume and thermal characteristics make metal foams a promising material for many industrial applications involving fluid flow and heat transfer.

Pressure drop and heat transfer of porous media have inspired a number of experimental and numerical studies. Many models have been proposed in the literature that correlate the pressure gradient and the heat transfer coefficient with the mean cell size and porosity. However, large differences exist among results predicted by different models. Most studies are based on idealized periodic cell structures.

In this study, the true 3-D micro-structure of the metal foam is obtained by employing x-ray computed microtomography (XCT). For comparison, ideal Kelvin foam structures are developed in the free-to-use software “Surface Evolver” surface energy minimization program. Pressure drop and heat transfer are then investigated using the CFD Module of COMSOL® Multiphysics code. A comparison between the numerical predictions from the real and ideal geometries is carried out.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In