0

Full Content is available to subscribers

Subscribe/Learn More  >

Air-Side Performance Characterization of Air-to-Refrigerant Heat Exchangers Using Parallel Parameterized CFD

[+] Author Affiliations
Khaled Saleh, Vikrant Aute, Reinhard Radermacher

University of Maryland College Park, College Park, MD

Weizhe Han

Shanghai Jiao Tong University, Shanghai, China

Paper No. HT2013-17060, pp. V004T14A003; 8 pages
doi:10.1115/HT2013-17060
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 4: Heat and Mass Transfer Under Extreme Conditions; Environmental Heat Transfer; Computational Heat Transfer; Visualization of Heat Transfer; Heat Transfer Education and Future Directions in Heat Transfer; Nuclear Energy
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5550-8
  • Copyright © 2013 by ASME

abstract

The goal of the study presented in this paper is to use Computational Fluid Dynamics (CFD) to characterize the heat transfer and friction performance of fins used in air-to-refrigerant heat exchangers. Five different types of fins used in air-cooled heat exchangers (HXs) are studied using Parallel Parameterized CFD (PPCFD) approach described in this paper. The fin types considered in this paper are; Plain, Wavy, Slit, Super Slit, and Louver. 3-D CFD models are built and tested for these fin types. Based on the CFD results, air side heat transfer coefficient (HTC), Colburn j factor, Fanning f factor, and pressure drop are calculated. The results from CFD simulations are compared against experimental data from the literature for the different fin types and a good agreement is found between the two. In addition, the results from CFD simulations are used to evaluate the thermal and hydraulic performance for a wide range of heat exchanger parameters such as tube diameters, fin pitch, number of rows, and frontal air velocity. The results show the advantages of using PPCFD to efficiently develop correlations for different types of fins used in air-cooled HX, with significant reduction in engineering time. The PPCFD approach can be extended to efficiently optimize novel heat transfer surfaces.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In