0

Full Content is available to subscribers

Subscribe/Learn More  >

Energy Performance of Sustainable Roofing Systems

[+] Author Affiliations
David J. Sailor, Prem Vuppuluri

Portland State University, Portland, OR

Paper No. HT2013-17535, pp. V004T13A002; 5 pages
doi:10.1115/HT2013-17535
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 4: Heat and Mass Transfer Under Extreme Conditions; Environmental Heat Transfer; Computational Heat Transfer; Visualization of Heat Transfer; Heat Transfer Education and Future Directions in Heat Transfer; Nuclear Energy
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5550-8
  • Copyright © 2013 by ASME

abstract

This study presents efforts to analyze how sustainable roofing technologies can contribute to the energy budget of buildings, and the resulting implications for heating and cooling energy use. The data analyzed in this study were obtained from a field experiment performed on a four story warehouse/office building in Portland, Oregon USA. The building’s roof includes a 216 panel, 45.6 kW solar photovoltaic array in combination with 576 m2 of vegetated green roofing. While most of the surface consists of green roof shaded by photovoltaic panels, the roof also has test patches of dark membrane, white membrane and un-shaded green-roofing. Interior and exterior surface temperatures were monitored over a period of two years and heat flux into the building is estimated using a finite difference conduction model.

On average, the black roof membrane was the only roof that caused a net heat gain into the building in the summer. In the winter, all four roofing technologies resulted in net heat losses out of the building. Both the PV-shaded and un-shaded green-roofs indicated a net heat loss out of the interior of the building during both the summer and winter. This latter effect is largely a result of green-roof evaporative cooling — which can benefit air conditioning demand in summer but may be undesirable during heating-dominated seasons.

Copyright © 2013 by ASME
Topics: Green roofs

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In