Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on Heat Transfer of Supercritical Kerosene in a Vertical Upward Tube

[+] Author Affiliations
Dan Huang, Wei Li, Wei Zhang

Zhejiang University, Hangzhou, China

Guo-Qiang Xu, Zhi Tao

Beijing University of Aeronautics and Astronautics, Beijing, China

Paper No. HT2013-17079, pp. V004T12A001; 8 pages
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 4: Heat and Mass Transfer Under Extreme Conditions; Environmental Heat Transfer; Computational Heat Transfer; Visualization of Heat Transfer; Heat Transfer Education and Future Directions in Heat Transfer; Nuclear Energy
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5550-8
  • Copyright © 2013 by ASME


A research on the heat transfer performance of kerosene flowing in a vertical upward tube at supercritical pressure is presented. In the experiments, insights are offered on the effects of the factors such as mass flow rate, heat flux and pressure. It is found that increasing the mass flow rate could enhance the heat transfer performances, while increasing the working pressure will deteriorate the heat transfer. Besides, the effect of heat flux on heat transfer is complicated. Based on the analysis of experimental data, enhancement of heat transfer occurs when the inner wall temperature of tube is higher than pseudo-critical temperature while the bulk fluid temperature is lower than the pseudo-critical temperature. At the supercritical conditions, heat transfer is influenced by the significant changes in thermo-physical properties, thus accurate evaluations of the thermo-physical properties become the key for the supercritical heat transfer calculations. The extended corresponding-state principle could be used for evaluating the density and the transport properties of kerosene, including its viscosity and thermal conductivity, at different temperatures and pressures. In order to obtain the numerical values of the heat capacity, a Soave–Redlich–Kwong (SRK) equation of state is used. The correlation for predicting heat transfer in kerosene at supercritical pressure is established, the calculation results from this correlation are in good agreement with the experimental results.

Copyright © 2013 by ASME
Topics: Heat transfer



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In