Full Content is available to subscribers

Subscribe/Learn More  >

Conjugated Heat Transfer in Heat Spreaders With Micro-Channels

[+] Author Affiliations
Diego C. Knupp, Renato M. Cotta, Carolina P. Naveira Cotta

Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Paper No. HT2013-17818, pp. V003T23A007; 10 pages
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME


This work is aimed at the experimental verification of a recently proposed single domain formulation of conjugated conduction-convection heat transfer problems, which are often of relevance in thermal micro-systems analysis. The single domain formulation simultaneously models the heat transfer phenomena at both the fluid streams and the channels walls by making use of coefficients represented as space variable functions with abrupt transitions occurring at the fluid-wall interfaces. The Generalized Integral Transform Technique (GITT) is then employed in the hybrid numerical-analytical solution of the resulting convection-diffusion problem with variable coefficients. The considered experimental investigation involves the determination of the temperature distribution over a heat spreader made of a nanocomposite plate with a longitudinally molded single micro-channel that exchanges heat with the plate by flowing hot water at an adjustable mass flow rate. The infrared thermography technique is employed to analyze the response of the heat spreader surface, aiming at the analysis of micro-systems that provide a thermal response from either their normal operation or due to a promoted stimulus for characterization purposes.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In