0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Galinstan-Based Microgap Cooling Enhancement Using Structured Surfaces

[+] Author Affiliations
Lisa Steigerwalt Lam, Marc Hodes

Tufts University, Medford, MA

Ryan Enright

Bell Labs Ireland, Alcatel-Lucent Ireland Ltd., Dublin, Ireland

Paper No. HT2013-17817, pp. V003T23A006; 8 pages
doi:10.1115/HT2013-17817
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME

abstract

Analyses of conventional microchannel and microgap cooling show that galinstan, a recently developed non-toxic liquid metal that melts at −19°C, may be more effective than water for high flux thermal management applications. This is because its thermal conductivity is nearly 28 times that of water. However, since the specific heat per unit volume of galinstan is about half that of water and its viscosity is 2.5 times that of water, caloric, rather than convective, resistance is dominant. We analytically investigate the effect of using microgaps that incorporate structured surfaces to ascertain their efficacy in reducing overall thermal resistance of galinstan-based thermal management in the laminar flow regime. Significantly, the high surface tension of galinstan (10 times that of water) implies that it can remain in the non-wetting Cassie state at the requisite pressure differences for driving flow through microchannels and microgaps. The flow over the structured surface encounters a limited liquid/solid contact area and a low viscosity gas layer interposed between the channel walls and galinstan. Consequent reductions in friction factor result in decreased caloric resistance and reductions in Nusselt number produce an increase in convective resistance. These are accounted for by recently developed expressions in the literature for hydrodynamic and thermal slip.

Copyright © 2013 by ASME
Topics: Cooling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In