0

Full Content is available to subscribers

Subscribe/Learn More  >

Hybrid Cooling for Thermal-Electric Power Generation

[+] Author Affiliations
John S. Maulbetsch

Maulbetsch Consulting, Menlo Park, CA

Paper No. HT2013-17812, pp. V003T23A004; 7 pages
doi:10.1115/HT2013-17812
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME

abstract

Water use by power plant cooling systems has become a critical siting issue for new plants and the object of increasing pressure for modification or retrofit at existing plants. Wet cooling typically costs less and results in more efficient plant performance. Dry cooling, while costing more and imposing heat rate and capacity penalties on the plant, conserves significant amounts of water and eliminates any concerns regarding thermal discharge to or intake losses on local water bodies.

Hybrid cooling systems have the potential of combining the advantages of both systems by reducing, although not eliminating, water requirements while incurring performance penalties that are less than those from all-dry systems. The costs, while greater than those for wet cooling, can be less than those for dry.

This paper addresses parallel wet/dry systems combining direct dry cooling using a forced-draft air-cooled condenser (ACC) with closed-cycle wet cooling using a surface (shell-and-tube) steam condenser and a mechanical-draft, counterflow wet cooling tower as applied to coal-fired steam plants, gas-fired combined-cycle plants and nuclear plants.

A brief summary of criteria used to identify situations where hybrid systems should be considered is given. A methodology for specifying and selecting a hybrid system is described along with the information and data requirements for sizing and estimating the capital costs and water requirements a specified plant at a specified site.

The methodology incorporates critical plant and operating parameters into the analysis, such as plant monthly load profile, plant equipment design parameters for equipment related to the cooling system, e.g. steam turbine, condenser, wet or dry cooling system, wastewater treatment system. Site characteristics include a water budget or constraints, e.g. acre feet of water available for cooling on an annual basis as well as any monthly or seasonal “draw rate” constraints and meteorological data. The effect of economic parameters including cost of capital, power, water and chemicals for wastewater treating are reviewed. Finally some examples of selected systems at sites of varying meteorological characteristics are presented.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In