Full Content is available to subscribers

Subscribe/Learn More  >

Analytical Modeling of a Bubble Column Dehumidifier

[+] Author Affiliations
Emily W. Tow, John H. Lienhard, V

Massachusetts Institute of Technology, Cambridge, MA

Paper No. HT2013-17763, pp. V003T23A002; 9 pages
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME


Bubble column dehumidifiers are a compact, inexpensive alternative to conventional fin-tube dehumidifiers for humidification-dehumidification (HDH) desalination, a technology that has promising applications in small-scale desalination and industrial water remediation. In this paper, algebraic equations for relevant mean heat and mass transfer driving forces are developed for improved modeling of bubble column dehumidifiers. Because mixing in the column ensures a uniform liquid temperature, the bubble column can be modeled as two single stream heat exchangers in contact with the column liquid: the seawater side, for which a log-mean temperature difference is appropriate, and the gas side, which has a varying heat capacity and mass exchange. Under typical conditions, a log-mean mass fraction difference is shown to drive latent heat transfer, and an expression for the mean temperature difference of the moist gas stream is presented. These expressions will facilitate modeling of bubble column heat and mass exchangers.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In